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The mathematical formulation of the problem of determining the
electrodes for the formation of intense beams of charged particles re-
duces to the solution of the Cauchy problem for the Laplace equation,
One can proceed either by separating the variables [1] or on the basis
of the theory of analytic continuation [2~5], This approach can be
used for plane or axisymmetwic flows, An algorithm for the construc-
tion of the analytic solution, which can also be used in the three-
dimensional case, is given below, It is assumed that the beam bound-
ary coincides with the coordinate surface x' = 0 of an orthogonal sys-
tem x! (i = 1,2,3). The solution is put in the form of a series in x*
with coefficients dependent on x? and x®, determined from recurrence
relations. The case of emission limited by space charge and tempera-
ture generally gives rise to difficulties due to the divergence of the
series which makes it impossible to calculate the zero equipotential by
the indicated method.

As an example, the formation of beams with an elliptic cross section
is considered in the following cases: (1) periodic variation of the z-
component of the velocity; (2) nonmonotonic variation of the poten~
tial in one-dimensional flow between planes z = const; (3) a beam
accelerated in accordance with a 3/2 law.

In the construction of the expansions the conditions on the boundary
are satisfied exactly by the first two terms of the series,

1. CONSTRUCTION OF GENERAL SOLUTION

We relate the surface of the beam to an orthogonal*
coordinate system x1 (i = 1,2, 3) and take x! = 0 as its
equation in this system. The problem consists in con-
structing the solution of the Laplace equation

9 i 0\ __
o (Vee" ) =0 (1.1)
satisfying the following conditions when x! = 0:
o = O (2, 29, Vg¥ g/ 0zt = e (2% 2%). (1.2)

Since it is intended to seek the solution in the form
of a series in x! with coefficients dependent on x? and x*
(k=0,1,...),

¢ =g, () (1.3)

we put the elements of the metric tensor gjk, and also
of the combination (g)? ngk, in the form of similar
series '

gu = q (21", VEEH = oy ()",
Vé'gzz =B, (zl)k’ -'/’Egss =7, (xx)k

(k==0,1,...). (1.4)

Here the subscripts k have the usual meaning of
the ordinal number of the terms of the series and
powers.

*The system x! is assumed orthogonal for simplicity;
nonorthogonality only complicates the calculations.

Substituting (1.3) and (1.4) into (1.1) and equating
the coefficients of equal powers of x! we arrive at the
recurrence relations for the determination of Ok

s A (s—k+Nae,,, +
k=0

3—1

+ 2 {18, @)l + 7, (P, ) Te'} =0
k=0

(s=12,...). {1.5)

Here the prime denotes differentiation and the sub-
script indicates the coordinate with respect to which
differentiation is carried out.
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We write out a few terms of the expansion of the
potential

Po= O, ¢ =-saph,
92 = [(Yaa/ao™ + o T1)e + o T2@p' +
+3/3 T5®q" — 13 (Dp” + D)) o,
93 = {6 8as/a0* — [as €a1*/ae® + /s (ar/ae™) (Te +
+T20p" + T5@q' — Op" — ®g") + Yeel1s" +
FYs Ty (Yo Tat A Ty + T’ — ©p" — of) +
Yo [(2hy + Ea) (65" — kne) -+ (26, -+ 8,) (eq” — 18) —
—(ep’ — kre)p' — (eQ" — &18)q] + Yo [#a T2 —
— g 2k + Ko) — %1 4 op” + kys'] Op’ -+
+ Yo (%25 — 21 (281 + 83) + %" — %aq' + 815 T D" —

— Ha (1 — %2) (Op" — Dq")} ao’ (1.6)
Beginning with ¢, the coefficients in (1.3) depend
not only on the derivatives of the functions ¢ and €
with respect to the arcs P and Q of the curvilinear
axes x* and x°
P =\ yenda, 0 = § Venda,

but also on the geometry of the surface. Here %, and
Wy are the prinecipal curvatures of the surface x! = 0;
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T, =mn; + %y is itstotal curvature; ky, kp and T;, and 6y,
8, and Tjare the principal and total curvatures of the
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coordinate surfaces x* = const and x° = const, cal-

culated for x! = 0:

o — 1 dlngy % 1 dlngg
1= , g = — ==
T2 Veu Iz 2Vea 97
A 1 dlngy A 1 dlngss
= — — g = — p
1 2 "/ gn dzz 2 '|/ 2z dxs !
5 1 dln dlngn 5 1 0dln dln gz
= 2 =
L A Vgm0 T A Vs 0P

In addition, S is the length of the arc of the curvi-
linear axis x!, orthogonal to the beam surface

= S ]/g_rl:d:cl,

so that T{g, for instance, means the rate of change of
the total curvature of the surfaces x! = const, calcu-
lated for x! = 0. The value of the coefficients depends
not only on the geometry of the problem, but also on
the meaning of the parameter in terms of which the
expansion is made. We can thus construct solutions in
systems obtained from one another by transformations
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of the type (x!)* = f(x!), which do not alter the geom-
etry of the coordinate surfaces x! = const; the ele-
ments of the metric tensor, however, become differ-
ent. For instance, for a cylindrical beam R = const in
the case of treatment in polar coordinates (1) R, ¥, z
and coordinates (2) In R, ¥, z we have

1 gu=1, g2 = (2%,

ay =1, a, =a;=..=0,

(2) g = exp(2ah), g,, = exp(2z!), a = 2¥/k!.

Transformations (x!)' = F(x') can be useful for
simplifying the formulas for determining ¢ in (1.3);
in addition, the region of convergence of (1.3) depends
on the meaning of %1,

Expressions (1.6) take a universal form if we con-
vert.to an expansion in terms of the arc S of the curvi-
linear axis x! by means of the relationship

e .

o ag
Performing this transformation, we obtain
=0+ e85+ (Tre+ T,@p" +
LT — @p — Q") 8+ g (2T (o Te +
+T2@p" + T30 — Op" — Dg") + &Ts" +
+ 2k + ko) (ep" — K1) + (281 - 82 (8g’ — b18) —
— (ep' — kie)p’ — (gq' — Biedq’ +
+ha T — %o (2F1 -+ Ko} — #1p” 4 #op” + kus’] ©p’ +-
4 (% T s — %1 (281 + 82} + #1g" — %o’ + 8151 D' —
e (t— #g) (D" — D)} S ... (1.7)
2. SOME COMMENTS

The proposed algorithm for construction of the so-
lution enables us to consider three-dimensional prob-
lems. In addition, in the general case the question of
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convergence of expression (1.3) remains open. Below
we will take specific examples to demonstrate the
difficulties which can be encountered in the formal
application of the method and we also attempt to de-
fine its range of validity.

2.1. Formation of ribbon-shaped beam. We con~-
sider the problem of formation of a ribbon-shaped
beam in the case of emission limited by space charge.
This, as we know [6], has an analytical solution ex-
pressed by the formulas

@ = (2% 4 y)hcostarctg (¥ / ) = R%cos 3. (2.1)
The construction of expansion (1.3) in Cartesian
coordinates leads to the following resuit:

Q. + 9. =0,

1 Fo “
0= TSR, oo 2.2)

1t is evident that (2.2) converges when |y/x| <1,
although expression (2.1) has a meaning for any x,y.
Formula (2.2) is valid for the construction of surfaces
¢ = const sufficiently far from the emitter, but does
not contribute anything to the determination of the zero
equipotential.
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It is of interest that on conversion to polar coor-
dinates x! = %, x%= R, we have

gu= R gn=1, o=R71 B =R,

a=P=0 (>0,

s(s+ )R, + (Re ) =0,
® =R”, £=0. (2.3)

It is easy to see that all gy; = 0, ok = cxRYS,
where ¢y are the coefficients of the expansion of
cos49/3 in a series convergent for all .

The same difficulty arises in the problem of for-
mation of a cylindrical beam [7] accelerated in ac-
cordance with a 3/2 law. The difficulty can be over-
come in exactly the same way, by converting from the
system x! = R, x%= 2, x3 = ¢ to coordinates

= [(R — 1)? + z2]'%,
—1)/z], 8=19.

2% = arc tg [(R

Thus, in the weatment of flows with special points on the beam
boundary (for instance, emission limited by space charge and tem-
perature), we cannot, generally speaking, obtain a complete picture
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of the equipotential surfaces without special contrivances, In the op-
posite case (nonzero velocity everywhere) we can expect that the re-
gion and rate of convergence will depend only on the geometry of the

boundary, the distance from it, and the form of the functions & and e,

2.2. Formation of annular beam. Using the method
of §1, we determine the focusing electrodes for the
annular electrostatic beam considered in [8]. The
particles move in circular paths, and the potential in
the region filled by charges is given by the expression

¢ = R~ (sin®/, P)'s.
Let x! = InR, x%= . Then
811 = gaz = VE= exp (2zY),

Vegt=Veg® =1,
oy = Bk =0 (k>0).

oo =B =1,

Relationships (1.5) take the form

$ (S + 1) (Ps+1 + q)szl = 0.

The conditions on the beam boundary R = 1 in this
case are
@y = D = (sin 3/, )%, o, = — 20,

The solution of the problem is given by the series

2 (= 1) gyt

(=" @),
o CEFOT

(o}\
(sz - (Zk)l (PZI.+1 -@

—4F o
0= 25

2K
T (1= g R @R, (2.4)

which converges absolutely for all R and ¢ = 27k/3
(k=0,1,2). Expression (2.4) can be used to construct
the complete set of surfaces ¢ = const and is another
new form of the solution [1, 2].
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2.3. Periodic focusing of ribbon=-shaped beam. In
the theory of periodic focusing there are approximate
solutions of the formation problem based on approxi-
mation of the nonmonoctonic variation of potential on
the beam boundary by a quadratic parabola or a co-
sine curve

gp=a0a+01—a) (z/c— 1)
=1 — (1 —a)cos (mzx/20), & =0. {2.5)

Here o and ocare constants determining the minimum
value of the potential and the position of the minimum.
The use of relationships (1.5) in Cartesian coordinates
leads to expressions (2.2) with @ given by formulas
(2.5). As a result we obtain

p=o0-+(1—a)[(zx)]s—1)2—y*]

p=1—(1—a)cos oz

iTMs

i ) =

A @R =

=1-—~(1—a)cos ——ch m/
Another example, where series(1.3)can be? summed,

thus reducing them to elementary functions, will be
given below.
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3. FORMATION OF BEAMS OF ELLIPTIC CROSS SECTION

As an illustration of the general method we give the solution of
several problems of formation of beams of elliptic cross section, We
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will use elliptic cylindrical coordinates & n, z, connected with the
Cartesian coordinates x, y, z by the formulas

=aB—1shEsinm,
y=ae¥YB—1chEcosn, z=z, (3.1)

Let £p=§ < «, 0 = n = 2 be the Laplace region, and let a be
the semiminor axis of the ellipse-boundary, & = Ey, B = (b/a %, The
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metric in (3.1) is given by the expressions

g1 =g = V=102 —1) (% + sin’y), gu=1. (3.2)

Then oy =1, Bg=1, ak = Bk = 0 when k > 0 and
Yo = Vo (M) = a® (B — 1) (sh?E, + sin® ),

25k~2
Top— = a2 (B —1)sh 2§ (—ZE——)I == const,
28 ~1
Yo = a2 (B — 1) ch 26 = const. )

The recurrence relations (1.5) take the form

s(s+1) Pgpy +
s—1

F@edn’+ S @’ =0 (=1,2..0.  (3.3)
k=0

Taking th%, = 1/8, we arrive at the final formulas for yy

Yo=a?H @) =1 & [@+ 1) — (B — 1) cos 2],
k-1 24 —1

Yogey = @ VB s BE—1) Tzk=az(3+1)??‘;)j' (3.4)

We will assume henceforth that the potential on the beam bound~
ary consists of the sum of functions P(n) and W(z), and the normal
derivative depends only on 7.

3.1. Coefficients of expansion in the general case, Using the re-
currence relations (3.3) and confining ourselves to the first twelve
terms of the expansion, we obtain

=P+ W(z), 91 = & (n),

1 1 ;
Po=—37 £" — raeH () W,

1 1 .
Pa=—"37 g’ — 3 abW”,

1

1
& GH W,

1
Gu=g7 PV + gy aH () WY —

1 1 1

s =g e’ + 15 a%H () WY — = abW",
S S S VI

‘Pa:—‘ﬁ‘P —pr et mw 4

6 i
g (B )+ 38| WY — e e,

1
‘:P7=——_7!‘5VI—

1
g @%bH () WV 4
2 3 2
+ g B[ (1) + 55 B 1) PV — 32 b,
1 v, A VI
Qo =57 PV g7 aoHs () WY —
1 18
— g ) [ 12 ) - T8V 4

1 12 1
+ gt [F )+ 7B WY — e ()

1
VIII VI
fo = 9 & g0 AP (W T —
~ 360 a5b[ ) + H M)+ 57 51 B_l LARES
1
+ 135 a% [H -+ 14 @+ ‘)] WY — a5 atW",
— 1 X 1 X
Pro=— 57 £ — 7oy &°H? (n) W +

i
+ 35370 2°H () [H? (1) + 48] wVHT

180
10800““ [Ha(ﬂ) 7o 8H -+ 2 7 B(B+1)] w4

17 162 1
RRTE) a{HB (m+ g5 B:l wiv_ TirTs a*H () W,

1 ox 1 x
Pu=—17 & — 798336 “PH (MW 4
1 [ B+1
+ 10395 2PH () LHﬁ m+ g Hmw+ B] WV
R B+1 1
- 110“5”[?0" HYm) + 25~ H) + 555 (32 +
+ 268+ D)WY+ g b 1 o)+ B |
116 7P 567 H (W + 35~ -
-2 W 3.5
155025 “OW” - (3.8)
We note that the coefficients of the potential expansion for a cy-
lindrical beam are obtained from (3.5) witha =b =8 =H = 1, Hence-

forth, as a characteristic length inthe plane &, 7 we take the semiminor
axis of the ellipse-boundary; for this we put a = 1 in formulas (3. 5).
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3.2. Beam with perfodic variation of z~component of velocity.
We determine the shaping electrodes for a flow with periodical varia-
tion of the z-component of the velocity, the case investigated in [9].
The particles in this case move over the surface of elliptic cylinders
£ = const in a homogeneous magnetic field H = Hy. The conditions at
the beam boundary are given by the formulas

1 —
@DZ%B—;———;BBic052n—I—W(z),
B2 a \? oy + Q
“:1+Bz<_")’ =0, @
241 B2 —1
cplzd(BB% )<1__Bz+1cosz'q>,
d_—_.ilzn_g:_‘]l, 2:“’%‘*'92' (3.6)
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Here e/m is the specific charge of the particle, J, is the current
density in the z-direction, wi, is the Larmor frequency, Q = const, and
wy, > Q. Formuias (3.6) are written in the dimensionless variables (the
symbol for the dimensionless quantity is omitted) which will be used
in the subsequent treatment,

x z
20 == —— y":-g—, z°_—_-—a~, @° = —

T a? a

9
medE ' (3.1)

The function W = W(z) is assigned parametrically
W = (1 — yp.cos 1), =t —ysinf, (3.8)

Some of the terms of the series for ¢, containing P(n), &n), and
their derivatives, can be summed, We then obtain

B+1 B
¢=a[w+ B E—

—B2_310052n (chzs+E;.'715hzs)]+

(o]
(—t)k N
W+ 2 e B RS — YR
k=1

— g HWE e VE WY w8
+[35 (1 58} WY — W et
+ VB~ g5 BV g (B Sy 8 )] WV —

— W lE ot [~ (g 2g)wiy

1
Bi1 H+ 578) WV +

+ V—{MS/O R VI 360<H +

Ly 3 L
+Bg[H+ —17;<B+1)}W1V— o W }.:.9 +
vir__ 180
+ {30240 He (e + 4B) W 10800 [H — g BH +

3+1)]W + 11340 (H +1;523)va‘“

1 _ {
— e ) — _ X
1417 HW }“"’ + Vﬁ{ 798336 1 W +

1 B+1
+josos H (H2 +

1 1
—MO[ g0 H* +sz£ H+232(Bz+2>5+1)]w‘”+

e uk ST B) WV _

+_1(5(567H+ Bs?) wiv —

Bl .= YW AZ4Q,

\..q,._J

E=F—&. (3.9)

The bracketed expression with which formula (3.9) begins is a har-
monic function and determines the focusing electrodes maintaining an
elliptic beam [9] (W = 0). We denote it by ¥. Figures 1-10 show the
results of calculation of the equipotential surfaces for several values of
B and X < 1, where the variation of the z-component of the velocity is
described by a curtate cycloid. In this case d/a = (2)l lo=gz=m,
and the picture is symmetric relative to z = 0 and z = w. Figures 1-4
are for cylindrical beams, We recall that the quantity y defines the
region of variation of the potential on the boundary with movement
along the z-axis, The criterion of accuracy was the value of the dis-
crepancy modulus N(§, 1, z; 0} = Ap(§, 1, z; n). At each pointthenum-
ber of terms of series (3.9) in the rangen=0, ..., 11,

: n
@ (n) = 2 §4, B,
=0

Ge=¥+W, O =0, {3.10)

was automatically chosen so that the discrepancy was a minimum.

The greatest distance from the beam boundary was determined by the
requirement IN| = 0.2. The function n(R, z) for B =1, y = 0.4 is shown
in Table 1, Here I = Rf/AR is the number of steps, counted from R =1,
up to which we must use n(Rf/AR) terms of the expansion. For in-
stance, for t =20°and 1 =1 we haven =8, for { = 2, , 10 we take
n=11, and for =11, ..,, 28, n= T; here AR = 0.025, The require-
ment |N| <1 when ¢ ~11is fairly strict. Table 2 gives the potential
values calculated from formula (3.10) for different n and the corres-
ponding discrepancy values,

4, =2.08,y=005 .~
pezif-0as,
e
ars- 154
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We note that the presence of a kink in the curve W = W(z} when
= 7/2 enables usto write an exact expression for the potential gex(k, 1)
in the plane z=n/2 ~ ¥

1 B2+
‘Pex":a[B;‘; +ﬁ;=—/z E—

B+1
Bl/z

——BT_B—lcosZn(CEZE—}— sh23)]+1=‘i’+1- (3.11)

This makes it possible to estimate the error at the points of maxi-
muin distance from the beam boundary; when y'= 0.4 it does not ex~-
ceed 3% for potential and 5% for R. As is to be expected, the con-
vergence of the expansions becomes worse with increase in 8 and y,

The higher-order derivatives in (3.9) were determined analytically
by differentiation of the equation for W this entailed the use of its
first integral

W' =2 (W 1),
W' = 8W' — 4 + & (v% — 1.

Figures 5-9 show the curves obtained from the intersection of the
surfaces ¢ = const by the half-planes ¢ = 0 and ¥ = 90°, Here R and ¢
are ordinary polar coordinates with the pole at x =y = 0 and angle
measured from the semimajor axis of the ellipse -boundary

Ry =Bt + (B — 1) sin2pl™", (3.12)

When ¢ = 0, the potential at each of the cross sections z = const
varies nonmonotonically, attaining a maximum value at some dis-
tance from R = Ry. This leads to the appearance of closed curves, fi-
nally contracting to a point, When ¥ = 90°, the potential maximum
presumably occuss at large R,

Figure 10 shows the evolution of the equipotentials ¢ = 1.338¢3
and ¢ = 1,320 from ¢ =0 to ¥ = 90° (» = 0,5,10,30,60°), The first of
themat ¢ =0 degenerates into a point, With increase in ¥ the curves
move from right to left, Between 10 and 30° the equipotentials split
[the second (upper) branch is not shown in the figure]; Ry varies in ac-
cordance with formula (3,12).

Figure 1 shows the change in the discrepancy for =1, y = 0.05
and y=0.4, t=0, 80, and 180" a logarithmic scale is used for |N|.

We note that a flow with periodic variation of vz cannot be real-
ized with a two-electrode system, at least with the potentials indi-
cated in the figures. However, this is also a feature of an annular
beam in the acceleration region 0 = y = 60°.

3.3. Case of nonmonotonic variation of potential in flow between
parallel planes, In the dimensionless variables usedin{10], the Cauchy
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Table 1
=1, v=04
" n(Rj/AR) t,° n(R/AR)
0 11 (18), 10 (19) 100 9(1), 11 (64), 7(85), 11(73)
10 11 (20), 10 (22) 110 | 9 (1), 11(12), 8(13), 11(72), 7(81)
20 8(1), 11(10) 7(28) 120 | 9 (1), 11 (23), 8(26), 11 (85), 7(96)
30 9(1), 11 (135), 5(29) 130 9(4), 11(39), 8(47), 11(98)
40 9(1), 11(18), 4(29) 140 9 (1), 11(61), 8(70), 11 (104)
50 8(1), 11(3), 10(8), 11(27), 150 | 10 (1), 9(3), 11 (10), 9(14), 11 (94),
9(35), 3(40), 9(42), 3 (46) 8194), 11(109)
60 8 (1), 10(2), 11 (3) 9(5), 11 (27), 160 10(1), 9¢3), 11 (28), 9(4T),
8 (49), 2 (54) 11 (109), 8 (120)
70 8(1), 10 (2), 11 (18), (30), 170 | 10 (1), 9(3), 11 (43), 9 (65), 11(116)
180 | 10 (1), 8(2) 9(3), 10(4), 11 (48),
80 |8(1),10 (2) 11 (12) 8(16) 11 (45) 9(70), 11 (117)
Table 2
=1, v=04
IN ()| ® (1) [N (n)1 @ (n)
t=0, R=1.15 t==180°, R=1.6

1.76 0.679880970 1.46 2.44500184

0.510 0.666858704 0.950 2.50811707

0.144 0.665645360 0.432 2.52789334

0.354-1071 0.665462433 0.159 2.53296422

0.869.1072 0.665435748 0.516.1072 2.53415636

0.213-1072 0.665431355 0.146.41071 2.53442748

0.536-1073 0.665430592 0.340-10™2 2.953448583

0.137.107¢ 0.665430448 0.580-1073 2.53449690

0.354-1074 0.865430420 0.411.10™ 2.53449856

0.980-107% 0.665430414 0.143.-10™ 2.53449869

0.336-4075 0.665430413 0.589%.1073 2.53449868

t=100°, R=1.6 t=180°, R=1.9

0.332 1.62874487 2.06 2.53092694

0.421 1.64309211 1.65 2.,64863449

0.367 1.64758761 0.979 2.69900185

0.235 1.65021314 0.482 2.71663879

0.108 1.65159170 0.207 2.72230122

0.353-10 1.65211406 0.771-1072 2.72405981

0.640-1072 1.65225890 0.236.107 2.72457672

0.114.10™ 0.65228643 0.514.10™ 2.72471065

0.163.1072 1.65228767 0.359.1078 2.72473796

0.792.1078 1.65228576 0.291.1073 2.72414109

0.193.10™2 1.65228467 0.130.1073 2.72474062




ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

Table 3
| N (n) @ (n) [N @) @ (n)
=1, a =102
Z=0, R=1.2 Z=1.602, R=2
1.43 0.200000000 1.62 1.20000000
0.496 0.483482339 1.05 1.10253520
0.141 0.181474656 0.409 1.05749690
0.3%8.1071 0.181177953 0.488-1071 1.04357033
0.120.1071 0.181131443 0.449-1071 1.04110855
0.399.1072 0.181121960 0.285.10"1 1.04123565
0.139.1072 0.181119768 0.228-1072 1.04148818
0.494.1073 0.181119197 0.785.10™2 1.04156454
0.178.4073 0.181119041 0.691.1072 1.04155977
0.650.10™2 0.181118996 0.305.1072 1.04154283
0.239.10™ 0.181118983 0.242.103 1.041453294
B=25, v=0, 0 =0.2
Z=0, R=5.2 Z =1.602, R—=5.6
3.02 0.200000000 2.99 1.20000000
1.60 0.189400000 1.48 1.17843383
0.186 0.184239388 0.795.1071 1.15499479
0.113 0.184117198 0.273-107 1.45431293
0.431.10™ 0.184040478 0.684.10™2 1.15402944
0.442-107 0.184018797 0.178-1071 1.15419896
0.600.10™2 0.184014476 0.126-4072 1.15424456
0.264-1072 0.184013115 0.310.10™2 1.15424824
0.104-10™2 0.184012612 0.477-4072 1.15424633
0.111.1072 0.184012074 0.576-1072 1.15423750
0.136-40™2 0.484012023 0.649-10™2 1.15423710
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conditions at the beam boundary are written as follows:

Z=z—s=TF (g +207) |/ g — P,

s=(1+20") Y1 —a’ ¢=0. (3.13)

Relationship ¢y = ¢((z) is specified implicitly: o = @4(0) is the
minimum value of the potential o = ¢,. The solution is given by
formulas (3.5) without any changes. Higher derivatives were found by
differentiation of the equation for ¢, with the use of its first integral

Q=% B =" (g — ).

The potential was calculated as in the previous case. The results
are given in Figs. 12, 13, In each bundle of three curves to which
some value of potential is ascribed, the middle one corresponds to the
value B = 1 (cylindrical beam), and the other two to 8 = 25, The
curve with the greater slope corresponds to the section ¢ = 0, and the
one with the lesser slope to ¥ = 90°, In Fig. 13, the latter is shown by
dashed lines. The cited results can be used to construct periodic fo-
cusing systems for beams of circular and elliptic cross section.

Table 3 gives the values of ¢(n) and [N(n)| for « = 0.2 and differ-
ent R, z. We note that reduction of « hinders the convergence of the
series,

3.4. Accelerating electrodes for emission limited by space charge.
At the beam boundary & = £, we have

@ = 27, 9= 0. (3.14)

Some of the terms in expansion (3.5) can be summed. As a result

we obtain

¢ = (22 + HE)"cos ¥ arc tg[( VIE) / 2] + Q,

where Q is the polynomial in (3.9).

The results of calculating the accelerating electrodes are given in
Fig. 14. As in the two previous figures, this shows equipotential curves
corresponding to cylindrical (8 = 1) and elliptic beams (8 = 25, =0
and ¢ = 90°) the curves with the greatest slope correspond to the case
8=25 9=0,
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